
N89-16330
TOWARDS A G E N E R A L O B J E C T - O R I E N T E D
SOFTWARE D E V E L O P M E N T METHODOLOGY

Ed Seidewitz / Code 5 5 4
Mike Stark / Code 5 5 2

Goddard Space Flight Center
Greenbelt, MD 20771

1. I N T R O D U C T I O N

An object is an abstract software model o f a problem domain
entity. Objects are packages o f both data and operations on
that data [Goldberg 83, Booch 831. The xaa (tm) package
construct i s representative o f this general notion o f an object.
-- ObJect-oriented _________--- ---- design is the technique o f using objects as the
basic unit o f modularity in system design. T h e Software
Engineering Laboratory at t h e Goddard Space Flight Center- is
currently involved in a pilot project t o develop a flight
dynamics simulator in Ada (approximately 40,000 statements)
using object-oriented methods. Several authors have applied
object-oriented concepts t o Ada (e.g., [Booch 83, Cherry 85bl).
In our experience we have found these methodologies limited
[Nelson 861. A s a result we have synthesized a more general
approach which allows a designer t o apply powerful,
object-oriented principles t o a wide range o f applications and
at all stages of design. The present paper provides an overview
o f our approach. Further, we also consider how object-oriented
design fits into the overall software life-cycle.

2 . O B J E C T S AND O B J E C T D I A G R A M S

We can model a procedure -------- as a mathematical function. That
is, given a certain set o f inputs (arguments and global data), a
procedure always produces the same set o f outputs (results and
global updates). A procedure, for--exampTey c a n n o t directly
model an address book, because an address book has ----- memory (a set
o f addresses) which can be accessed and updated. Normally, the
solution t o this is t o place such memory in global variables.

Figure 1 g i v e s a representation o f the above situation.
This diagram uses a notation similar t o [Yourdon 791 to show
both data and control flow. The arrow from CALLER t o PROCEDURE
indicates that CALLER transfers control t o PROCEDURE. Note that
there is an implicit return o f control when PROCEDURE finishes.
The smaller arrows in-Tigu?e T-sEow-iEe data flows, which may go
in either direction along t h e control arrow. Also, figure 1
includes an explicit symbol f o r t h e GLOBAL DATA. Control arrows
directed towards this symbol denote data access, even though
control never really flows into t h e data, o f course. This
convention indicates that t h e data is always passive and never
--------- initiates any action.

D.4.6.1

I

2
GLOBAL DATA

FIGURE1 A p r o c e d u r e d

T h e use o f global

ADDRESS
MEMORY

STATE)
@JTEwI(AL

FIGURE 2 An ADDRESS BOOK object

storage leaves data open t o illicit
modification. T o - a v o i d this,-an object packages some memory
together with all allowable operations on it. We can model an
object as a mathematical "state machine" with some internal
state which can be accessed and modified by a limited number of
mathematical functions. We thus implement an object as a
packaged set of procedures and internal data, as shown i n
figure 2. For an address b o o k object, the internal memory would
be a set o f addresses, and the allowable operations would be
accessing an address by name, adding an address, etc. Unlike a
procedure, t h e same arguments t o an object operation may produce
--------- different resulfs--at different times, depending on t h e hidden
internal state. We will diagram an object showing only its
operational connections to other objects, as i n t h e -- obiect ---
--- diagram --- o f figure 3 [Seidewitz 85a].

When there are several control paths on a complicated
object diagram, it rapidly becomes cumbersome t o show data flows
or all individual procedure control flows. Therefore, an arrow
between objects on an object diagram indicates that one object
invokes --- o n e -- o r ---- more of the operations provided by another object
and is not marked with data flow arrows. -- Obiect --- ------ descrigtions _-_-_
for each object on a diagram provide details o f t h e data flow.
An object description includes a list o f all operations provided
by an object and, for each arrow leaving the object, a list o f
operations used from another object. F o r example, t h e object

0 . 4 . 6 . 2

-* --- d e s c r i p t i o n f o r DATE BOOK f r o m f i g u r e 3 i s :

P r o v i d e s :
N e x t - A p p o i n t m e n t () NAME t ADDRESS
G e t A p p o i n t m e n t (DATE t TIME) NAME + ADDRESS
Make A p p o i n t m e n t (DATE + TIME + NAME)
C a n c e l - A p p o i n t m e n t (D A T E + T I M E)

U s e s :

A D D R E S S BOOK
Look-Up

CLOCK
Get D a t e
Ge t -T ime -

D a t a i n p a r e n t h e s e s a r e a r g u m e n t s w h i c h f l o w a l o n g t h e c o n t r o l
a r r o w , w h i l e u n p a r e n t h e s i z e d d a t a a r e r e s u l t s w h i c h a r e
r e t u r n e d .

FIGURE 3 A simple schedule organizer

D.

FIGURE 4 Parent-child hierarchy

4 . 6 . 3

3. OBJECT-ORIENTED DESIGN -

The intent of an object is to represent a problem domain
entity. The concept o f abstraction deals with how an object
presents this representation to other objects [Dijkstra 6 8 ,
Liskov 74, Booch 831. There is a spectrum o f abstraction, from
objects which closely model problem domain entities to objects
which really have no reason for existence. The following are
some points in this scale:

Best

I
----- Entity __----__--- Abstraction - An object represents a useful
model of a problem domain entity.

------ Action --___------ Abstraction - An object provides a generalized
set of operations which all perform the same kind of
function.

_____-- Virtual ------- Machine Abstraction - An object groups
toctether oDerations which are all used by some
sukerior level o f control or all use some j u n i o r level
set o f operations.

_____--_____ Coincidental _-__--------- "Abstraction" - A n object packages a set
o f operations which have no relation to each other.

The stronger the abstraction of an object, the more details are
suppressed by the abstract concept. The principle of
____------- information ----- h i d i n g states that such details should be kept
secret from other objects [Parnas 72, Booch 831, s o as t o better
preserve the abstraction modeled by the object.

The principles of abstraction and information h i d i n g
provide the main guides for creating "good" objects. These
objects must then be connected together to form a n
object-oriented design [Seidewitz 85bl. Following [Rajlich 851,
we consider two orthogonal hierarchies i n software system
designs. The parent-child ----------- hierarchy deals with the
decomposition o f larger objects into smaller component objects.
The _____--- seniority hierarchy deals with t h e organization o f a set of
objects into "layers". Each layer defines a ------- virtual ------- machine
which provides services t o senior layers [Dijkstra 681. A major
strength o f object diagrams is that they can distinctly
represent these hierarchies.

The parent-child hierarchy is directly expressed by
_____-- leveling object diagrams (see figure 4). At its top level, any
complete system may be represented by a single object. For
example, figure 5 shows a diagram o f the complete SCHEDULE
ORGANIZER o f the last section. The object SCHEDULE ORGANIZER
represents the ''parent" o f the complete object diagram of
figure 3. The boxes labeled "USER" and "CLOCK" are -------- external
-------- entities 9 objects which are not included in the system, but
which communicates with t h e top level system object. Note the
arrow labeled '*RUN". Bq convention, RUN is the operation used
to initially invoke the entire system.

D.4.6.4

7-

J

VIRNAl.
MACHIM
XNTEFtFACE 1

I

VlRTUAL
MACHINE
N E I F A C E 2

FIGURE 5 External Entities Diagram FIGURE 6 Seniority hierarchy

Figure 3 is t h e decomposition o f t h e SCHEDULE ORGANIZER o f
figure 5. Beginning at t h e system level, each object can be
refined i n t h i s way into a lower level object diagram. The
result is a leveled set o f object diagrams which completely
describe t h e structure o f a system. At t h e lowest level,
objects are completely decomposed into FrrJmitive ------ -- obiects, ----
procedures and internal state data stores, resulting i n diagrams
similar to figure 2.

The seniority hierarchy is expressed by t h e topology of
connections on a single object diagram (see figure 6). Any
layer in a seniority hierarchy can call on any operation i n
j u n i o r layers, but ----- never any operation in a senior layer. Thus,
all cyclic relationships between objects must be contained
within a virtual machine layer. Object diagrams are drawn with
t h e seniority hierarchy shown vertically. Each senior object
can be designed as if t h e operations provided by junior layers
were "primitive operations'' in an extended language. Each
virtual machine layer will generally contain several objects,
each designed according t o t h e principles o f abstraction and
information hiding.

T h e main advantage o f a seniority hierarchy is that it
reduces t h e coupling between objects. This is because all
objects in one virtual machine layer need t o know nothing about
senior layers. Further, t h e centralization o f t h e procedural

D.4.6.5

and data flow control in senior objects can make a system easier
t o understand and modify. However, this very centralization -can
cause a messy bottleneck. I n such cases, the complexity of
senior levels can be traded off against the coupling o f j u n i o r
levels. The important point is that the strength o f the
seniority hierarchy i n a design can be chosen from a - spectrum ------ of
possibilities, with the best design generally lying between the
extremes. This gives t h e designer great power and flexibility
i n adapting system designs t o specific applications.

I n the simple automated plant simulation system shown i n
figure 7, the j u n i o r level components d o not interact directly.
This design is somewhat like an object-oriented version o f the
structured designs of [Yourdon 791. We can remove the data flow
control from the senior object and let the junior objects pass
data directly between themselves, using operations within the
virtual machine layer (see figure 8). The senior object has
been reduced to simply activating various operations i n t h e
virtual machine layer, with very little data flow. We can even
remove the senior object completely by distributing control
among the j u n i o r level objects (see figure 9). The splitting o f
t h e RUN control arrow i n figure 1 1 means that the three objects
are activated simultaneously and that they run concurrently.
The seniority hierarchy has collapsed, leaving a homologous or
non-hierarchical desiqn fYourdon 791 (no seniority--bTerarchy,

hierarchy still remains). A design that is; the parent-child
which is homologous at all
t o what would be produced
[Cherry 85a, Cherry 85bl.

decomposition levels is very similar
by the P A M E L A (tm) methodology o f

I FIGURE 7 A simple plant automation FIGURE 8 plant simulator with
simulation system junior-level connections

D.4.6.6

FIGURE9
FIGURE10 EMS

Plant simulator, homologous design

-
context diagram

4 . OBJECT-ORIENTED LIFE CYCLE

Object diagrams and the object-oriented design concepts
discussed above can be used as part of an object-oriented life
cycle. To do this, we must show that a specification can be
translated into object diagrams, and that object diagrams map
readily into Ada. We use structured analysis for developing the
specification [DeMarco 791. The data flow diagrams of a
structured specification provide a leveled, graphical notation
containing the information needed to represent abstract
entities, but in a form emphasizing data flow and data
transformation.

_--________ Abstraction --_- analysis __- is the process of making a transition
from a structured specification to an object-oriented design
[Stark 861. We will use a simplified version of an Electronic
Message System (E M S) as an example o f abstraction analysis.
Figure 10 is the context diagram for EMS, and Figure 11 is the
level 0 data flow diagram. EMS must allow the user to send,
read, and respond to messages, to obtain a directory o f valid
users to which messages can be sent, and to add and delete users
from that directory.

The first step of abstraction analysis i s to find a central
----- entity. This is the entity that represents the best abstraction
for what the system does or models. The central entity is
identified in a similar way to transform analysis [Yourdon 7 9 1 ,
but instead of searching for where incoming and outgoing ---- data
--___ flows are most abstract we look for a set o f processes and ---- data
-_____ stores that are most abstract. It may sometimes be necessary to

0 . 4 . 6 . 7

l ook a t lower l e v e l d a t a f low d iagrams t o f i n d t h e c e n t r a l
e n t i t y . EMS i s a sys tem s e r v i n g a person s i t t i n g a t a t e r m i n a l
s end ing and r e c e i v i n g messages. On f i g u r e 11 we have c i r c l e d
t h e " c u r r e n t u s e r " d a t a s t o r e and t h e p r o c e s s 1 .0 G E T EMS
C O M M A N D . Toge the r t h i s p r o c e s s and d a t a s t o r e r e p r e s e n t t h e
u s e r e n t e r i n g commands a t a t e r m i n a l . Thus t h e y r e p r e s e n t t h e
c e n t r a l e n t i t y .

Next , we need t o f i n d e n t i t i e s t h a t d i r e c t l y s u p p o r t t h e
c e n t r a l e n t i t y . We do t h i s by f o l l o w i n g d a t a f lows away from
t h e c e n t r a l e n t i t y and g r o u p i n g p r o c e s s e s and d a t a s t o r e s i n t o
a b s t r a c t e n t i t i e s . I n o u r example t h e USER DIRECTORY d a t a s t o r e
and t h e t h r e e p r o c e s s e s (2 . 0 , 4 . 0 a n d 5 . 0) s u p p o r t i n g i t form an
e n t i t y . The p r o c e s s 3 . 0 ACCESS Q U E U E S w i t h t h e d a t a s t o r e U S E R
Q U E U E INDEX a l s o form an e n t i t y . All t h e s e e n t i t i e s a r e c i r c l e d
and l a b e l e d on f i g u r e 11. We c o n t i n u e t o f o l l o w t h e d a t a f lows
and t o i d e n t i f y e n t i t i e s u n t i l a l l t h e p r o c e s s e s and d a t a s t o r e s
a r e a s s o c i a t e d wi th a n e n t i t y .

F i g u r e 12 i s t h e ----- e n t i t y graph -- - f o r EMS. Squares r e p r e s e n t
e n t i t i e s , l i n e s w i t h a r rows r e p r e s e n t f low o f c o n t r o l from one
e n t i t y t o a n o t h e r , and l i n e s w i t h no arrowhead r e p r e s e n t
i n t e r a c t i o n s where f l o w o f c o n t r o l i s n o t y e t d e t e r m i n e d . A
"most s e n i o r " e n t i t y i s p l aced i n t o t h e d e s i g n t o g i v e an
i n i t i a l f l ow o f c o n t r o l . I n t h e EMS example, e n t i t y EMS i s t h i s
most s e n i o r o b j e c t , and we have t h e U S E R INTERFACE e n t i t y
" c o n t r o l l i n g " t h e e x t e r n a l e n t i t y USER. T h i s f l ow o f c o n t r o l

-
FIGURE 11 EMS level 0 data flow diagram

D.4.6.8

MESSAGE

(1.0, D1) (20. 4.0. (3.0, 03)
5.0, 02)

I ' ' 1

IRECTOF? %
3.0

MESSAGE
CENTEF?

FIGURE 12 EMS entity graph .FIGURE 13 EMS object diagram

i n t o U S E R w i l l u l t i m a t e l y b e i m p l e m e n t e d as r e a d and w r i t e
o p e r a t i o n s . N o t e a l s o t h a t t h e USER e n t i t y c o n t r o l s EMS. T h i s
f l o w o f c o n t r o l r e p r e s e n t s t h e u s e r i n v o k i n g t h e EMS s y s t e m .
A f t e r t h i s i n v o c a t i o n c o n t r o l r e s i d e s w i t h EMS u n t i l t h e s y s t e m
i s e x i t e d . A l l o t h e r p o t e n t i a l i n t e r f a c e s a r e shown b y l i n e s
w i t h no a r r o w s . The numbers i n s i d e t h e s q u a r e s r e p r e s e n t t h e
p r o c e s s e s and t h e d a t a s t o r e s c o n t a i n e d i n t h e e n t i t y . T h i s
p r o v i d e s t r a c e a b i l i t y f r o m r e q u i r e m e n t s t o d e s i g n .

The e n t i t y g r a p h i s t h e s t a r t i n g p o i n t f o r o b j e c t
i d e n t i f i c a t i o n . I t shows e n t i t i e s w i t h t h e h i g h e s t a b s t r a c t i o n
p o s s i b l e and a l s o shows a l l t h e p o s s i b l e i n t e r c o n n e c t i o n s
b e t w e e n t h e e n t i t i e s . S i n c e we a r e t r y i n g t o b a l a n c e d e s i g n
c o m p l e x i t y , o b j e c t a b s t r a c t i o n , and c o n t r o l h i e r a r c h y , we w i l l
a l t e r t h e e n t i t y g r a p h t o f o r m t h e f i n a l o b j e c t d i a g r a m . I n EMS
t h e e n t i t i e s a r e e a s i l y mapped i n t o o b j e c t s . The e n t i t i e s U S E R ,
U S E R INTERFACE, a n d EMS f o r m a c y c l i c g r a p h and t h e r e f o r e a r e on
t h e same v i r t u a l m a c h i n e l e v e l . We c a n n o t c o m b i n e an e x t e r n a l
e n t i t y i n t o an o b j e c t , b u t c o m b i n i n g EMS and U S E R I N T E R F A C E
y i e l d s a s i n g l e o b j e c t t h a t i s s e n i o r t o U S E R D I R E C T O R Y and
M E S S A G E CENTER. C o m b i n i n g t h e t w o j u n i o r o b j e c t s w o u l d s i m p 1 i f y
t h e d e s i g n , b u t a t t h e e x p e n s e o f a b s t r a c t i o n , a s t h e message
p a s s i n g m e c h a n i s m s h a v e l i t t l e t o d o w i t h t h e d i r e c t o r y . We
h a v e a l s o c h o s e n t o make U S E R DIRECTORY s e n i o r t o M E S S A G E
C E N T E R , s i n c e t h e d a t a f l o w s a r e f r o m U S E R D I R E C T O R Y i n t o d a t a
s t o r e s c o n t a i n e d b y M E S S A G E C E N T E R . F i g u r e 1 3 shows t h e
r e s u l t i n g o b j e c t d i a g r a m .

0 . 4 . 6 . 9

Needless t o say, identifying objects is not always t h i s
simple. Usually there is a trade-off made between level o f
abstraction and design complexity, o r a balancing o f these two
considerations and t h e virtual machine hierarchy. When these
situations occur it is still t h e designer’s judgement that must
determine which side o f t h e trade-off matters more f o r t h e
application being designed.

Once t h e object diagrams are drawn w e can identify t h e
operations provided and used by each object. In t h e c a s e o f 2.0
USER DIRECTORY t h e operations are identified by examining t h e
primitive processes contained within processes 2.0, 4.0 and 5.0
on figure 1 1 . The data exchanged are identified by looking at
data flows crossing t h e object boundaries, with t h e detailed
information about the data being found in t h e data dictionary.
T h e object description is produced by matching t h e operations
and t h e data. T h e description generated for 2.0 USER DIRECTORY
is a s follows:

Provides:
List Names () LIST-OF NAMES
Add user (USER NAME +-PASSWORD)
Delete User (USER-NAME)
Signon-(USER-NAME + PASSWORD) VALIDITY - FLAG

Uses:
3.0 MESSAGE QUEUES

Reset Queue
C r e a t e - New - Queue

Using t h e subset data flow diagram o f processes and data
stores that an object contains, t h e process o f object
identification can be repeated t o produce a child object
diagram. T h e only difference is that entities are identified
based on how they support t h e object’s operations, not by
finding a central entity. This process is used until t h e lowest
level o f data f l o w diagrams is exhausted.

T h e transition from an object diagram t o Ada i s
straightforward. T h e relationship between object diagram
notations and Ada language features is:

-- ObJect --- --- Diagram ---
Object
Procedure
State
Arrow
Actor

Ada Construct
Package
Subprogram
Package o r t a s k variables
Procedure/function/entry call
Entries/Accepts

(not covered in this paper)

--- -__-----_

Package specifications are derived from t h e list o f operations
provided by an object. For t h e EMS USER DIRECTORY object t h e
package specification is:

0.4.6.10

package User-Directory is

subtype USER-NAME is STRING(l..EO);
subtype PASSWORD i s STRING(1..6);
t y p e LIST - - O F NAMES is array (POSITIVE r a n g e c >) o f USER-NAME;

procedure Signon (User: in USER-NAME; PW : in PASSWORD;

procedure Add-User (U: in USER NAME; PW : in PASSWORD);
procedure Delete-User (U: in USER-NAME);
function List-Names return LIST-OF-NAMES;

Valid-User : out Boolean);

end User-Directory;

The package specifications derived from t h e level 0 object
diagram are placed i n t h e declarative part o f t h e top level Ada
procedure a s follows:

procedure EMS is
package User-Interface is

procedure Start;

end'User - Interface;

package User - Directory i_s

end User - Directory;

package Message-Queues is

end Message - Queues;

package body User Interface is separate;
package body User-Directory is separate;
package body Message-Queues is separate;

User 1nterface.Start;

. . .

. . .

begin

end EMS;
for lower level object diagrams t h e mapping is similar, with
package specifications being nested in t h e package body o f the
parent object. States are mapped into package body variables.
This direct mapping produces a highly nested program structure.
To implement t h e same object diagram with library units would
require t h e addition o f a package to contain data types used by
two o r m o r e objects. This added package would serve as a global
data dictionary.

T h e process o f transforming object diagrams to Ada is
followed down all the child object diagrams until w e are at the
level o f implementing individual subprograms. If t h e mapping is
done without explicitly creating library units t h e lowest level
subprograms will all be implemented as subunits, rather than by
embedding t h e code in package bodies.

0.4.6.11

5. EVALUATION OF THE METHODOLOGY

T o measure how well abstraction analysis w o r k s a s a
methodology w e must first define o u r criteria f o r a good
methodology. W e will use Barry Boehm's "Seven Principles o f
Software Engineering" [Boehm 761 as a basis o f comparison.
These principles are:

Manage using a sequential life c y c l e plan
Maintain disciplined product control
Perform continuous validation
Use enhanced top down structured design
Maintain clear accountability f o r results
Use better and fewer people
Maintain a commitment t o improve t h e process

Abstraction analysis supports all these principles. .The
---- life c y c l e plan is supported by providing t h e abstraction
analysis method for producing object diagrams, which are in turn
mappable into Ada. This also provides a means o f disciplined
Froduct control by tracing how Ada software implements an object
orienxed--&%Tsn, and also tracing h o w t h e design meets t h e
specification. This traceability allows a manager t o see that
software meets its specification, and allows maintenance o f
specifications, design, and software t o be consistent. Grady
Booch's [Booch 831 work influenced o u r methodology, but did not
provide a sufficient means o f specifying large systems. Another
drawback is that Booch does not define a formal mapping from a
specification t o a design.

T h e graphic notation supports a top down approach t o
software development. T h e leveling o f both -&fafTow-aiagrams
and o f object diagr.ams allows t h e designer to start at a high
level and w o r k top-down t o a design solution. The use o f
graphics also supports continuous validatioc by making design
walkthroughs and iterative changes easier tasks t o perform.
Both Booch and Cherry [Cherry 85b] use graphics, but'Booch's
notation w a s not designed for large applications, and Cherry's
methodology stops graphing after all t h e concurrent objects have
been identified. The graphics used by structured analysis
[DeMarco 791 provide t h e best analogy t o how graphics are used
i n t h e object diagram notation.

T h e life cycle model we have defined also supports the
remaining three principles. Objects a r e defined i n t h e design
phase and implemented as separate Ada compilation units. Tools
such as unit development folders can be used t o maintain
------------- accountability f o r completion of t h e design, implementation, and
testing o f objects. It is hoped that t h e object-oriented
approach and t h e use of Ada will enhance both productivity and
software reliability. T h i s assertion will be tested by
measuring t h e outcome of t h e pilot project in t h e Software
Engineering Laboratory at Goddard S p a c e Flight Center. The
success o f t h i s methodology would allow ------ better --- and ----- fewer people -- --
to concentrate more effort on producing a good design.

D . 4 . 6 . 1 2

Finally, w e a r e . certainly committed t o improving
process. T h e object diagram notation-and--absfraction analysis
ha?e-aiready seen much change since t h e initial versions were
defined. Further refinement will be t o define criteria for
using parallelism, criteria for choosing between library units
and t h e nested approach defined above, and to generate object-
oriented approaches t o software specifications and software
testing.

6. CONCLUSION

Object diagrams have been used t o design a 5 0 0 0 statement
team trainging exercise and to design t h e entire dynamics
simulator. They are also being used t o design another 50,000
statement Ada system and a personnal computer based system that
will be written i n Modula 11. O u r design methodology evolved
out of t h e s e experiences as well as t h e limitations o f other
methods w e studied. Object diagrams, abstraction analysis and
associated principles provide a unified framework which
encompasses concepts from [Yourdon 791, [Booch 831 and
[Cherry 85bl. This general object-oriented approach handles
high level system design, possibly with concurrency, through
object-oriented decomposition down t o a completely functional
level. We are currently studying how object-oriented concepts
can be used in other phases of the software life-cycle, such as
specification and testing. When complete, this synthesis should
produce a truly general object-oriented ------ development ---- methodology.

TRADEMARKS

Ada is a trademark of t h e US Government (Ada Joint Program
Office).

PAMELA is a trademark o f George W. Cherry.

REFERENCES

[Boehm 761 Boehm, Barry W . "Seven Basic Principles of
Software Engineering," NASA/GSFC Engineering
Coll oqui um, 1976.

[Booch 831 Grady Booch. -------- Software -- Engineering ------- with M a ,
Benjamin/Cummings, 1983.

[Cherry 85a] George W. Cherry. PAMELA: Process Abstraction
Method for Embedded Large Ape1 ---------, ications Course
notes, Thought**Tools, January 1985.
------ --- -_-_---- ---

George W. Cherry and Grad S. Crawford. The [Cherry 85b]
PAMELA ltlnl -___----- Methodology, November 1985.

[DeMarco 791 Tom DeMarco. ---------- Structured ---- Analisis --- --- and - System ----
- Specification -----------, Prentice-Hall, 1979.

D.4.6.13

[Dijkstra 681 Edsgar W . Dijkstra. "The Structure o f t h e 'THE'
-------------- Communications -- o f --- t h e Multiprogramming System,"

--- ACM, May 1968.

[Goldberg 831 Adele Goldberg and David Robison. ---_----_ S m a l l t a l k --- 80:
Imp1 ementati on.

Aaaison-Wesley, 1983,-
-- --_-__---_- Its The Language and ---

[Liskov 741 Barbara H . Liskov and S. N. Zilles.
"Programming with Abstract Data Types," Proc. of
the ACM Symp. on Very High Level Languages,
------- SIGPLAN ------- Notices, April 1974.

[Nelson 861 Robert W. Nelson. "NASA Ada Experiment - -
Attitude Dynamic Simulator," ----- Proc. -- o f
------ Washington --- --- Ada Symposium, March, 1986.

[Parnas 721 David L. Parnas. "On the Criteria t o be Used i n
Decomposing Systems into Modules, I'
-------------- Communications -- o f --- the --- ACM, December 1972.

[Rajlich 851 Vaclav Rajlich. "Paradigms for Design and
Implementation in Ada," -----------_-- Communications -- o f --- the
--- A C M , July 1985.

[Seidewitz 85a] Ed Seidewitz. ObJect --- --- Diagrams ----, unpublished GSFC
report, May 1985,

[Seidewitz 85b] Ed Seidewitz. Some Principles o f ObJect
-------- Oriented ---- Design, unpublished GSFC report, Augczf
1985.

[Stark 861 Mike Stark. ----------- Abstraction ---- Analysis: ---- From
---------- Structured Specification to -- ObJect-Orienfea ------------
---- Design, u n p u b i i s ~ e a - ~ S T ~ - r e p o r t , April 1986.

[Yourdon 791 Edward Yourdon and Larry L. Constantine.
Structured Design: Fundamentals o f 2 ----- Discieline ----
-- o f --- Computer ---- --- Program --- --- a n d - Sysfems ----- ---- Design, -
Prentice-Hall, 1979.

---------- ---- -- ------------

D.4.6.14

SESSION D.5

Panel Chair:

CAIS PANEL

David Pruett
NASA Johnson Space Center

Panel members:

Clyde Roby
Jack Krammer
Institute for Defense Analysis
Alexandria, Virginia

Sue LeGrand
SofTech
Houston, Texas

Robert Stevenson
Gould Electronics
Fort Lauderdale, Florida

Robert Fainter
Virginia Tech
Blacksburg, Virginia

Hal Hart
TRW Defense Systems Group
Redondo Beach, California

D.5.1

